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CHAPTER

Transfer Function

2.1 TRANSFER FUNCTION AND IMPULSE RESPONSE FUNCTION

In control theory, transfer functions are commonly used to characterise the input-output relationships of
components or systems that can be described by linear, time-invariant differential equations.

Transfer Function

The transfer function of a linear, time-invariant, differential equation system is defined as the ratio of the
Laplace transform of the output (response function) to the Laplace transform of the input (driving function) under
the assumption that all initial conditions are zero.

Transfer Function of Open Loop System :

R [ |-

Transfer Function of Closed Loop System :

Transfer function of closed loop system

As) G Ris—HSQEEL [ 6s) Cls)
R(S) 1+ Gs)H(s) F1FGs)
s) = Reference input
R( P o) ]
C(s) = Controlled output L
E(s) = Actuating error signal

) =
)
)
)
)
)

G(s) = Forward path transfer function
H(s) = Feedback path transfer function
C(s) = G(s)E(s)

G(s)[R(s) = C(s)H(s)] = G(s)[R(s) = G(s)C(s)H(s)
C(s) = G()H(s)C(s) = G(s)R(s)

as) - G

Rs)  1£Gs)H(s)

MRDE ERSYH www.madeeasypublications.org solveghﬁ?é‘inﬁfgé
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Shortcut Method

1. Tofind close loop transfer function from open loop transfer function

If O.LTF = _Numerator
Denominator
Then. CLTE - .Numerator
Denominator + Numerator
2. Tofind open loop transfer function from close loop transfer function
If C.LTF = _Numerator
Denominator
Then. OLTE = Nurmerator

Denominator — Numerator

Linear Systems

A systemis called linear if the principle of superposition and principle of homogeneity apply. The principle
of superposition states that the response produced by the simultaneous application of two different forcing
functions is the sum of the two individual responses. Hence, for the linear system, the response to several inputs
can be calculated by transferring one input at a time and adding the results. It is the principle that allows one to
build up complicated solutions to the linear differential equations from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are proportional, thus implying
that the principle of superposition holds, then the system can be considered as linear.

Linear Time-Invariant Systems and Linear-Time Varying Systems

A differential equation is linear if the coefficients are constants or functions only of the independent
variable. Dynamic systems that are composed of linear time-invariant lumped-parameter components may be
described by linear time-invariant differential equations i.e. constant-coefficient differential equations. Such systems
are called linear time-invariant (or linear constant-coefficient) systems. Systems that are represented by differential
equations whose coefficients are function of time are called linear time varying systems. An example of a time-
varying control system is a space craft control system (the mass of a space craft changes due to fuel consumption).

The definition of transfer function is easily extended to a system with multiple inputs and outputs (i.e. a
multivariable system). In a multivariable system, a linear differential equation may be used to describe the
relationship between a pair of input and output variables, when all other inputs are set to zero. Since the principle
of superposition is valid for linear systems, the total effect (on any output) due to all the inputs acting simultaneously
is obtained by adding up the outputs due to each input acting alone.

EXAMPLE : 2.1 When deriving the transfer function of a linear element
(a) both initial conditions and loading are taken into account.

(b) initial conditions are taken into account but the element is assumed to be not
loaded.

(c) initial conditions are assumed to be zero but loading is taken into account.

(d) initial conditions are assumed to be zero and the element is assumed to be
not loaded.

Solution : (c)

While deriving the transfer function of a linear element only initial conditions are assumed
to be zero, loading (or input) can’t assume to be zero.

MRDE ERSYH www.madeeasypublications.org solveghﬁﬁgnﬁgé
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EXAMPLE : 2.2 If the initial conditions for a system are inherently zero, what does it physically
mean?

(a) The system is at rest but stores energy

(b) The system is working but does not store energy

(c) The system is at rest or no energy is stored in any of its part
(d) The system is working with zero reference input

Solution : (c)

A system with zero initial conditions is said to be at rest since there is no stored energy.

2.2 STANDARD TEST SIGNALS

rt)
1. Step Signal
ft) = Au(t) A
here, unit step signal (1) 1120
w uni i u(t) =
’ PSig 0,t<0 5 t
Laplace transform, R(s) = Als nt)
2. RampSignal
() = At t=20
|0 t<o0
Laplace transform, R(s) = A/s? - t
3. Parabolic Signal
2
) = Atc/2 ,t20
0 , <0
Laplace transform, R(s) = A/s® t
4. Impulse Signal r(t)
o =0 Hoo -
r(t) = ’ ; 3(t)dt =1
() {o oy £ )
Laplace transform, R(s) =1 =0 ;
Transfer function, G(s) = @
A(s)
C(s) = F(s) R(s)
Let, R(s) = Impulse signal = 1
C(s) = Impulse response = G(s) x 1 = Transfer Function
C
£ {Impulse Response} = Transfer function = s
R(s)
MRDE ERSYH www.madeeasypublications.org Theory with
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—— e Td/dt(Parabolic Response) = Ramp Response
e d/dt(Ramp Response) = Step Response

NOTE

l e Jd/dt(Step Response) = Impulse Response

Consider, a linear time-invariant system has the input u(t) and output y (). The system can be characterized
by its impulse response g(t), which is defined as the output when the input is a unit-impulse function §(¢). Once
the impulse response of a linear system is known, the output of the system y(t), with any input u(t), can be found
by using the transfer function.

Let G(s) denotes the transfer function of a system with input u(t), output y(t), and impulse response g(t).
The transfer function G(s) is defined as

LIy ()]

_ Y(s)
Llu(t)]

initial conditions— 0 U(S)

G(s) = £[g(®)]

Sometimes, students do a common mistake, they first find y(t)/u(t) and then take its Laplace
transform to determine the transfer function which is absolutely wrong. Because,

)= T® = 2o~ Lo

2.3 POLES AND ZEROS OF A TRANSFER FUNCTION

The transfer function of a linear control system can be expressed as

G(S) — A(S) — K(S — S1) (S ~ 32) (S ~ Sn)

B(s) (s—s,)(s=5p)...(s=sp)

where Kis known as gain factor of the transfer function G(s).

In the transfer function expression, if sis put equalto s,, s, ... s, then it is noted that the value of the
transfer function is infinite. These s, s, ... s, are called the poles of the transfer function.

In the transfer function expression, if sis put equal to s;, s, ... s, then it is noted that the value of the
transfer function is zero. These s,, s, ... s, are called the zeros of the transfer function.

2.3.1 Multiple Poles and Multiple Zeros

Thepoles s, s, ... s, or the zeros s,, s, ... s, are either real or complex and the complex poles or zeros
always appear in conjugate pairs.

It is possible that either poles or zeros may coincide; such poles or zeros are called multiple poles or
multiple zeros.

2.3.2 Simple Poles and Simple Zeros

Non-coinciding poles or zeros are called simple poles or simple zeros. From the transfer function expression,
it is observed that
e If n> m, then the value of transfer function is found to be infinity for s = . Hence, it is concluded
that there exists a pole of the transfer function at infinity (eo) and the multiplicity (order) of such a pole
being (n—m).

MRDE ERSYH www.madeeasypublications.org So]veghg‘)’(gn‘glig;
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e If n< m, thenthe value of transfer function is found to be zero for s = . Hence, it is concluded that
there exists a zero of the transfer function at infinity (e) and the multiplicity (order) of such a zero
being (m-n).

Therefore, for a rational transfer function the total number of zeros is equal to the total number of poles.
The transfer function of a system is completely specified in terms of its poles, zeros and the gain factor.
Consider the following transfer function:
s$+3

(8+2)(s+1+3))(s+1-3))

For the above transfer function, the poles are at :

(@ s,=-2, (b) s,=-1-3jand (c) s,=-1+3/

a

G(s) =

The zeros are at s, = -3.

As the number of zeros should be equal to number of poles, the remaining two zeros are located at s = .
The pole-zero plot is plotted as shown:

+Ho
X i
X denotes pole “ C o i
O denotes zero -c 3 o I +c
X---— 3
—jo

Fig. : Pole-zero plot

Note : Poles and zero are those complex/critical frequencies which make the transfer function infinity or
Zero.

2.3.3 Proper Transfer Functions

The transfer functions are said to be strictly proper if the order of the denominator polynomial is greater
than that of the numerator polynomial (i.e. m > n). If m = n, the transfer function is called proper. The transfer
function is improper if n > m.

In the transfer function expression of a control system, the highest power of sin the numerator is generally either
equal to or less than that of the denominator.

EXAMPLE : 2.3 A transfer function has two zeros at infinity. Then the relation between the
numerator degree (N) and the denominator degree (M) of the transfer function is

(@) N=M+2 (b) N=M-2

(c) N=M+1 (d) N=M-1

Solution : (b)

For a rational transfer function, the total number of zeros are equal to total number of poles.
Therefore, Number of poles = M; Number of zeros = N + 2

For arational transfer function: M = N+2 or N=M-2

MRDE ERSYH www.madeeasypublications.org Theory with
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2.4 PROPERTIES OF TRANSFER FUNCTION

The properties of the transfer function are summarized as follows:

1.

The transfer function is defined only for a linear time-invariant system. It is not defined for non-linear
or time variant systems.

The transfer function between an input variable and an output variable of a system is defined as the
Laplace transform of the impulse response. Alternately, the transfer function between a pair of input and
output variables is the ratio of the Laplace transform of the output to the Laplace transform of the input.
All initial conditions of the system are set to zero.

Transfer function is independent of the input of the system.

The transfer function of a continuous-data system is expressed only as a function of the complex
variables. It is not a function of the real variable, time, or any other variable that is used as the
independent variable or discrete-data system modelled by difference equations, the transfer function
is a function of Z, when the Z-transform is used.

If the system transfer function has no poles or zeros with positive real parts, the system is a
minimum phase system.

Non-minimum phase functions are the functions which have poles or zeros on right hand
side of s-plane.

The stability of a time-invariant linear system can be determined from its characteristic equation.

Characteristic equation: The characteristic equation of a linear system is defined as the equation
obtained by setting the denominator polynomial of the closed loop transfer function to zero.

EXAMPLE : 2.4 State and explain minimum phase and non-minimum phase transfer functions

with examples.
Solution :
Minimum phase transfer function:

= Transfer functions which have all poles and zeros in the left half of the s-plane, i.e.,
system having no poles and zeros in the RHS of the s-plane are minimum phase
transfer functions.

= Onthe other hand, a transfer function which has one or more zeros in the right half
of s-plane is known as “non-minimum phase transfer function”.

Let Gy(s) = N
1+ 7T,
. 1+ joT, .
= Gyjo) = 121 )
1+ joT,
| 1- joT, ’
and G = — (i
o(j) o, (ii)

The transfer function given by equation (i) represents the minimum-phase transfer
function and equation (ii) represents the non-minimum phase transfer function.

= The pole-zero configuration of above transfer function as given by equation (i) and
(ii) may be drawn as:

MRDE ERSYH

www.madeeasypublications.org solveghﬁ?ﬁnﬁfi
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Img Img
G,(jo) G,(jo)
Pole Zero
a3 O Re * O Re
-1 =1 0 I |
T, T T, T

= The minimum phase function has unique relationship between its phase and
magnitude curves. Typical phase angle characteristics are shown below:

¢
0°

G, (Joo)
-90°+

Gy(jw)

-180°

w
= It will be seen that larger the phase lags present in a system, the more complex are
its stabilization problems. Therefore, in control systems, elements with non minimum
phase transfer function are avoided as far as possible.
= A common example of a non-minimum phase system is “transportation lag” which
has the transfer function,
G(jw) = e¥T=1/-wT Radian

1£-57.3wT degree

2.5 METHODS OF ANALYSIS

Methods of analysis of a system involves:
(a) Transfer function approach
(b) State variable approach

Many a times in interviews the relative comparison of these two approaches has been asked,
which we will understand during the study of state variable analysis.

2.5.1 Advantages of Transfer Function Approach

1. It gives simple mathematical algebraic equation.
2. It gives poles and zeros of the system directly.
3. Stability of the system can be determined easily.
4. The output of the system for any input can be determined easily.
MRDE ERSYH www.madeeasypublications.org So]veghg‘)’(gn‘glig;
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Using equation (i) when input is u(t), output is
His+c) Ki, D E
s(s+a)(s+b) s s+a s+b
Taking inverse Laplace transform,
Output = 2 + De! + Ee™3!
So, a=1 and b=3
Using final value theorem
S-Hs+c) " a3
= shsras+b) _ Amerber+Ee
He 2 and Hc=6
ab
. o , , , H(s+c)
Using equation (i) when input is e2!u(1), output is (5+2)(s+a)(s+b)
Only two terms are present in the response.
Hence S+C=58+2
= c =2
H=3 (- HC=6)
4 OBJECTIVE Q3 The frequency response of a linear time-invariant
S — BRAIN TEASERS system is given by H(f):T?C)nf' The step
Q1 A control system with certain excitation is response of the systemis
gozverned by the following mathematical equation @ 5(1—eSu(t) (o) 5(1 —e’”5)u(z‘)
d—§+l%+ix=10+15e_4t+26_5t. The 1 1
at 2 at 18 (C) _(1_9_5l)u(t‘) (d) -
natural time constants of the response of the 5 (s+9)(s+1)
system are Q4 For the following system :
(@) 2sandbs (b) 3sand6s X(s)
2
1 1 X(s) ¥(s)
—s and —s 1 s 1
(c) 4sandbs (d) 3 6 = A 3
Q2 Theresponse g(t)of alinear time invariant system
to animpulse &(t), under initially relaxed condition
is g(t) = et + 72l The response of this system
for a unit step input u(?) is when X,(s) = 0, the transfer function ;(/(—S) is
~t 2t 2\8
@ (1+et+e=hu(h) s+ 1
(b) (et+ e2Yu(t) (@) 2 (b) P
(c) (1.5-et-0.5e2u(t) ) S+ 1
(d) e5(t)+ e2tu(t) ©) S5+ @ Ss+2)
MRDE ERSY Theory with
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Q5 Ramp response of the transfer function Q10 If a system is represented by the differential
s+1 . d? d
F(s) = i i ay 9y -
(s) s+ 0 IS equation, is of the form o +6 o +9y =r(t)
@ ~-tezilt o) lezilily () ket +ke® (b)) (k + ke
4 4 2 4 4 2 .
. 1 1 (c) ke3tsin(t+¢) (d) te3tu(t)
© - Ee—m oo 3 e + 5! Q11 A linear system initially at rest, is subject to an
i i — 1 _ ot
Q6 Which of the following statements are correct? input signal r(t) = 1-e7 (1= 0). The response
_ , of the system for t > O is given by ¢(t) = 1 - e 2L,
1. Transfer function can be obtained from the , ,
. The transfer function of the system is
signal flow graph of the system.
2. Transfer function typically characterizes to (a) (5+2) (b) (S+;)
linear time invariant systems. (s+7 (5+2)
3. Transfer function gives the ratio of output to ©) 2s+1) ) (s+1)
input in frequency domain of the system. (s+2) 2s+2)
(@ 1and2 (b) 2and 3 Q.12 Consider the RC circuit shown in figure below:
(c) 1and3 (d) 1,2and 3 AvA\"ZrAv ‘v‘i‘v
Q7 Which of the following is not a desirable feature fe a‘\
of a modern control system? e\c - TC¢ j“
(@) Quickresponse
(b) Accuracy The transfer function Eo(s) will be (T = RC)
(c) Correct power level i(9)
(d) Oscillations % %
Q8 Inregenerating feedback, the transfer function TS+ 2ts+1 TS J;STSH
. . T s
is given b c) —>—— -
? / ) 1252 + 215 +1 1°5% + 315+ 1
(a) gés; :1 GG((S))H( ) Q.13 The pole-zero configuration of a transfer function
S S)H(s
" is shown in figure. The value of transfer function
(b) As) _ _Gls) Hs) at s = 1 is found to be 4. Then the transfer
Rls) 1-Gls) Hls) function of system is
©) As) __Gs)H(s) Jo
R(s) 1+ G(s)H(s)
« As)__ Gs) .
R(s) 1-G(s)H(s) 6 4 3 -2
Q9 The principle of homogeneity and superposition
are applied to
(a) linear time variant systems 12(s+3) () 15(s+3)
(b) non-linear time variant systems S(s+2)(s+4) s(s+2)(s+4)
(c) linear time invariant systems ©) 4(s+3) ( _10(s+2)
(d) non-linear time invariant systems S(s+2)(s+4) S(s+3)(s+4)
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Q.14 The transfer function of a system is given by
C(s) 100 ‘ ANSWER KEY
= > , using the concept
R(S) (s+10)(s° +2s+1)
of dominant pole, the 2nd order approximation .o 2@ 30 4@ 5. (@
of above transfer function is 6. (d) 7. (d) 8. (d) 9. (0 10. (d)
__100 ) __1 1. (© 12 (b 13. (b) 14 (b) 15. (b,d)
§% +25+1 s®+2s5+1 6 B 17. @
10 100
C d
©) s+10 @ (s+10)
HINTS & EXPLANATIONS
Q.15 A differentiator has a transfer function whose
(@) Magnitude decreases linearly with frequency “ (b)
(b) Magnitude increases linearly with frequency
. . . Natural time constants of the response depend
(c) Phaseincreases linearly with frequency
only on poles of the system.
(d) Phase is constant
L T(s) = @
Q.16 The pole-zero plot of a system is given below. If R(s)
G(s) = 15 for s = 2, then the transfer function of B 1
the system is 2 +s/2+1/18
fo 18
1852 + 95 + 1
o 1
i ~ (B6s+N(3s+)
X c
-2 0 This is in the form !
e:s (1+sTy) (1+ sT)
——————— |
T, T, = 6 sec, 3 sec.
B
@ 12(s? + 25+ 5) 18(s” + 25+ 2) Transfer function of system is impulse response
(s+N(s+2) (s+N(s+2) of the system with zero initial conditions.
o 125 +25+3) 6(s” + 25 +3) Transfer function = G(s) = £(e™" +&™)
(s+1)(s+2) (s+N(s+2) B 1
Q17 A linear time invariant system initially at rest, s+1 s+2
when subjected to unit step input gives a Gls) = C(S)_ 1 N 1
response of 2te™® t > 0, the corresponding B R(s) “ls+1 s+2
transfer function is . 1
For step input, R(s) = —
2 2s s
@ ssrsr P e (1
Cls) = R(s)- G(s) = —(—+—j
2 25 sils+1 s+2
© — @ — 1 1
(s+5) (s-9) = +
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Y(s) K(22 +2(2) + 2)
S) = =S G = 15 =
A9 = X (s) 2+9)2+2)
Put s = jo, _ K < 15x3x4 B
H(jw) = jo B - 10
IH(jo)| = ® Therefore, transfer function of the system is given
as,
ZH(jw) = 90° (always) )
So, it is constant with w.r.t. frequency. G(s) = 18(s” +25+2)
(s+1(s+2)
16 [
@
Poles : -1, -2
, , Given:  y(t) = 2te ™t
Zeros:—1+/j,-1—]j
S x(t) = u(?)
.. Transfer function is given by, ,
Taking Laplace transform, we get,
K((s+1)%+1)
G(s) = ————, 2 1
(s+)(s+2) Y(s) = > and X(s)= -
o (s+5) s
where gain is assumed to be K
5 .. Overall transfer function,
(s) = K(s“+2s5+2)
T (s+1)(s+2) ;((3; __2s _
S
ats=2, G(s)=15 (s+5)
4) CONVENTIONAL BRAIN TEASERS
Q1 Determine the transfer function, G(s) = % for the network shown below using mesh analysis.
2Q 20
——WW—
1F
20 +
v(t) Cj) 2H % vi(9)
1F
T
1. [0
For the given network assuming loop current as shown in figure.
Writing mesh equation using KVL,
-V(s)+2I,(s) + % +(14(8) = I,(s)) (2 + 5 =0
2 1
Ws) = (4+§j 11(3)—(2+§) 1,(S) (1)
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Similarly, (2 +2s) I,(s) + (2 + 5 (I,(s)-I(s)) =0

(4+23+1j I5(8s) —(2 +l) I,(s)
S S

—(2 +l) 11(s)+(4+23+1) 1,(s)
5 s

Eliminating 7,(s) using equation (2),

0 (2)

(4+2s+ 1) 15(s)

S

Control Systems and
Process Control

Transfer Function

20
——\W—

1/s
20
Vs) 1) @ @ 2s§vL(s)
1/s

27

2Q

T

45+ 25° +1
11(3)= ( 1) _( 25 + 1 ]2()
2+ —
s
2
Substituting equation (1), V(s) = (4+§) [%}12(3)—(2+512(3)
p)
Vs) = 4s+2[43+23 +1JI2(S)—(2S+1JI2(S)
S 25+1 s
Ws) = %(4s+2$2 +1)12(s)—(23+1) I,(s)
2, 5 _ oa_ 2
Vs) = (8s+4s ;2 2s-1) 1,(s) = 4s +6S+112(s)
I)(s) S
V(s) 45° + 65+ 1
2812(8) — 232 _ VL(S)
V(s) 4s® +6s+1  V(s)
EEEN
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CHAPTER

Introduction

Section-B

1.1 PROCESS

e A process denotes an operation or a series of operation on fluid or solid materials by which the
materials are converted into a more useful state, where the physical or chemical state of the materials
is not necessarily altered. In terms of chemical engineering, process is a term which means change
of chemical state and in terms of mechanical engineering the process means the change of physical
states of the material.

e  Biggerindustrial process such as the chemical process occurs in the chemical plants. A chemical
plant is an arrangement of processing units such as (heat exchanges, reactors, pumps, distillation
column, absorbers, evaporators, tanks etc.). These plant auxiliaries are integrated with one another
in a systematic and rational manner. The overall objective of the plant is to convert the available raw
materials into the desired products in the most economical way.

e Aprocess consists of various variable parameters which are to be controlled such as temperature,
pressure, concentration, level etc. These variable programmes are called as the process variables.

Example:
Consider a water heating process as shown in the figure below:

e The purpose of the heater here is to maintain the supply of the heated L fomperature
water. This heater pipe acts as a heat exchange the heat of the hot H
water circulating in the heater pipe is transferred to the water present
in the tank.

So, the outlet water temperature of the tank marked ‘¢’
is the variable we want to control, so this variable ‘¢’
here is called as the controlled variable.

Heater c, temperature

—_—

e The variable ‘¢’ is maintained by controlling the flow
rate of the hot water through the heater pipe (i.e.
variable ‘m’). So, here the flow rate of hot water ‘m’
acts as the manipulated variable, and the incoming
water temperature acts as the load variable, here the
variable ‘v is acts as load variable.

—>

m, heat flow rate

Figure : A water-heating process
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1.2 AUTOMATIC CONTROL

e During the ongoing of the process it is strongly required that the controlled variable should be
maintained at the desired set point, any deviation in the value of the controlled variable will lead to
the change in the quality of the product obtained. So, we need a continuous monitoring of the
operation of the chemical plant and has to avoid the effect of external disturbances, so as to achieve
the error free output. This is accomplished by proper arrangement of equipment (i.e. measuring
devices, valves, controllers, computers) and ensure a trained human intervention (plant designers
or plant operators) which altogether forms a control system.

e Following are three basic needs that a control system is required to satisfy:

1. Suppressing the influence of external disturbances.
2. Ensuring the stability of a chemical process.
3. Optimizing the performance of a chemical process.

e These all requirements can be achieved by installing an automatic control loop, which continuously
monitors a process and keep the controlled variables at the desired point.

1.2.1 Controlling a Process

A process is controlled by using a feedback loop. The closed loop process containing the negative
feedback keeps the controlled variable at the desired level. In a negative feedback closed loop process, wherever
any deviation of the control variable from the desired point occurs the process automatically adjusts itself to the
controlled variable set output.

1.2.2 Controlling the Process of a Stirred Tank Heater

e The figure below shows the process controlling the operation of a stirred tank heater.

T, F, = constant

Thermocouple —e

+ F.T.

Fst
Figure : Feedback temperature control for a tank heater

e The liquid enters the tank at a flow rate of £, (ft3min) and at a temperature of T, (°F). This liquid is
heated by the flow of steam having the flow rate as F_, (Ib/min) entering through the heater pipe.

e |ettheflow rate and temperature of the steam leaving the tank be F and T respectively. The temperature
Tis uniformly distributed in the tank by the help of stirrer, which continuously mixes the water.

e The main objective of the process is
1. To keep the effluent temperature (T) at a desired value T
2. To keep the volume of the liquid in the tank at desired value V..

e The operation of the heater is disturbed by the changes in the external factors such as change in the
feed flow rate (F,) and the temperature (7). If nothing changes then after attaining 7= T, we can
leave the system of steady state, but this is not possible as the F, and 7, changes with time.
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So afeedback loop is required to sense the change in the output and accordingly vary the manipulated
variable to keep the control output stable at the set point.

* Inthe above figure we can see that we have to keep T = T, despite of the changes in the values of
T.and F,. A thermocouple is installed which measures the temperature Tof the liquid in the tank. The
measured temperature. T is compared with the desired temperature. T  which yield a deviation
e=(T,—T).

e The value of deviation ¢ is sent to the control mechanism which decides what should be done in
order to keep the temperature T to return back to the desired value T (i.e. to make ¢ = 0).

e Whene>Q0.

i.e. when, (T < T,), the controller opens the steam valve so that more heat can be supplied.
e Whene<Q0.

i.e. when, (T>T,), the controller closes the steam value.
e Whene=0.

i.e.when (T=T), controller does no work.

e The control system which measures the variable of directimportance (Tin this case) after a disturbance
had its effect on it, is called the feedback control system. The desired value T is called the set
point and is supplied externally to the controller.

Similarly, by the use of a feedback control loop we can control the liquid level in a tank by either
manipulating the inlet flow rate or by manipulating the output flow rate.

e The figure below shows two alternative method of controlling the liquid level by the closed loop
feedback configuration.

F X+ Set point
Fi T, = constant -4 hs
T, = constant hi

--"| Level measuring
device

/ 'h

/ '

|

< : <

g B Lol
X

il—» ~ + Set point
€ ! P

A

B Controller

(@ (b)

Figure : Alternative liquid-level control schemes

* Here, the figure (a) controls the water level by manipulating the outlet flow rate (F,) and figure (b)
controls it by manipulating the inlet flow rate (F)).

i

1.3 FEED FORWARD CONTROL TECHNIQUE

e Thefeed forward control does not wait until the effect of the disturbances has been felt in the output
of the system but it act before the disturbances affects the output. So, we can say that the feedforward
control anticipate the disturbance and do not let it affect the output of the system.
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e Inthe above figure we can see a feedforward control loop _ F;=constant
used to control the temperature of the water in the tank. LT l
Our objective here is to keep the temperature T= T_, when <
the T, changes. Here we measure the temperature of inlet ;
steam T, and open or close the steam value to provide —
more or less steam. Such a control configuration is called m F.T

the feed forward control loop.

Figure : Feedforward temperature control
for stirred tank heater

e Process dynamics and control is used to carry out the automatic control of the ongoing
process.

REMEMBER e The controller compares the measured value to the set point value.

e For carrying out the automatic control of a process, the process variables are converted into
the 4-20 mA current.

e The controller generates the error value which is used to vary the manipulated variable.

e When the error value is zero (i.e. € = 0) the controller does not work.

e The feedforward control acts before the effect of disturbance has been felt in the system.

e The feedback control action acts after the effect of disturbance has taken place in the output.

OBJECTIVE Q.4 The output of the controller is zero when
.4 BRAIN TEASERS (@) Y(S)=Vsp(S) (b) ¥(8)>Vep(s)

Q.1

Q.2

Q.3

What is the output of the controller? (©) J9) <Veols) (@) ¥18)>>Ysp()

(&) manipulated variable Q.5 The feedforward control

(b) measured variable (a) needs more in depth study of the process
(c) set point value modelling.

(d) manipulating variable (b) requires more number of measurements

(c) donot let the disturbance to affect the output

Which of the following in the reference input given
(d) all of the above

to the controller?

(a) manipulated variable
(b) measured variable ANSWERS KEY
(c) set point value
(

d manipulating variable 1. (a) 2. (C) 3. (a) 4. (a) 5. (d)
When the error, € = 0, then the controller gives

(a) zeroresponse  (b) positive response SEEE
(c) negative response(d) none of the above

-~ =

=
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